Electron Dynamics upon Ionization of Polyatomic Molecules: Coupling to Quantum Nuclear Motion and Decoherence.
نویسندگان
چکیده
Knowledge about the electronic motion in molecules is essential for our understanding of chemical reactions and biological processes. The advent of attosecond techniques opens up the possibility to induce electronic motion, observe it in real time, and potentially steer it. A fundamental question remains the factors influencing electronic decoherence and the role played by nuclear motion in this process. Here, we simulate the dynamics upon ionization of the polyatomic molecules paraxylene and modified bismethylene-adamantane, with a quantum mechanical treatment of both electron and nuclear dynamics using the direct dynamics variational multiconfigurational Gaussian method. Our simulations give new important physical insights about the expected decoherence process. We have shown that the decoherence of electron dynamics happens on the time scale of a few femtoseconds, with the interplay of different mechanisms: the dephasing is responsible for the fast decoherence while the nuclear overlap decay may actually help maintain it and is responsible for small revivals.
منابع مشابه
Modeling and Simulation of a Molecular Single-Electron Transistor
In this paper, to understand the concept of coupling, molecule density of states that coupled to the metal electrodes will be explained then, based on this concept, a weak and strong coupling for the molecules attached to the metal electrodes will be described. Capacitance model is used to explore the connection of addition energy with the Electron affinity and the ionization energy of the mole...
متن کاملQuantum dynamics of non - rigid systems comprising two polyatomic fragments
We combine earlier treatments for the embedding of body-fixed coordinates in linear molecules with the close-coupling formalism developed for atomdiatom scattering and derive a hamiltonian which is most convenient for describing the nuclear motions in van der Waals complexes and other non-rigid systems comprising two polyatomic fragments, .4 and B. This hamiltonian can still be partitioned in t...
متن کاملNonadiabatic chemical dynamics in an intense laser field: electronic wave packet coupled with classical nuclear motions.
Dynamics of molecules in an intense laser field is studied in terms of the quantum electronic wave packet coupled with classical nuclear motions. The equations of motion are derived taking a proper account of molecular interactions with the vector potential of a classical electromagnetic field, along with the nonadiabatic interaction due to the breakdown of the Born-Oppenheimer approximation. W...
متن کاملPolyatomic molecules under intense femtosecond laser irradiation.
Interaction of intense laser pulses with atoms and molecules is at the forefront of atomic, molecular, and optical physics. It is the gateway to powerful new tools that include above threshold ionization, high harmonic generation, electron diffraction, molecular tomography, and attosecond pulse generation. Intense laser pulses are ideal for probing and manipulating chemical bonding. Though the ...
متن کاملTime-resolved imaging of purely valence-electron dynamics during a chemical reaction
Chemical reactions are manifestations of the dynamics of molecular valence electrons and their couplings to atomic motions. Emerging methods in attosecond science can probe purely electronic dynamics in atomic and molecular systems1–6. By contrast, time-resolved structural-dynamics methods such as electron7–10 or X-ray diffraction11 and X-ray absorption12 yield complementary information about t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 118 8 شماره
صفحات -
تاریخ انتشار 2017